Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Infection ; 2023 Mar 03.
Article in English | MEDLINE | ID: covidwho-2280392

ABSTRACT

PURPOSE: SARS-COV-2 pandemic led to antibiotic overprescription and unprecedented stress on healthcare systems worldwide. Knowing the comparative incident risk of bloodstream infection due to multidrug-resistant pathogens in COVID ordinary wards and intensive care-units may give insights into the impact of COVID-19 on antimicrobial resistance. METHODS: Single-center observational data extracted from a computerized dataset were used to identify all patients who underwent blood cultures from January 1, 2018 to May 15, 2021. Pathogen-specific incidence rates were compared according to the time of admission, patient's COVID status and ward type. RESULTS: Among 14,884 patients for whom at least one blood culture was obtained, a total of 2534 were diagnosed with HA-BSI. Compared to both pre-pandemic and COVID-negative wards, HA-BSI due to S. aureus and Acinetobacter spp. (respectively 0.3 [95% CI 0.21-0.32] and 0.11 [0.08-0.16] new infections per 100 patient-days) showed significantly higher incidence rates, peaking in the COVID-ICU setting. Conversely, E. coli incident risk was 48% lower in COVID-positive vs COVID-negative settings (IRR 0.53 [0.34-0.77]). Among COVID + patients, 48% (n = 38/79) of S. aureus isolates were resistant to methicillin and 40% (n = 10/25) of K. pneumoniae isolates were resistant to carbapenems. CONCLUSIONS: The data presented here indicate that the spectrum of pathogens causing BSI in ordinary wards and intensive care units varied during the pandemic, with the greatest shift experienced by COVID-ICUs. Antimicrobial resistance of selected high-priority bacteria was high in COVID positive settings.

2.
Antibiotics (Basel) ; 12(1)2023 Jan 09.
Article in English | MEDLINE | ID: covidwho-2199677

ABSTRACT

(1) Background: Colistin-only susceptible (COS) Acinetobacter baumannii (AB) ventilator-associated pneumonia (VAP) represents a clinical challenge in the Intensive Care Unit (ICU) due to the negligible lung diffusion of this molecule and the low-grade evidence on efficacy of its nebulization. (2) Methods: We conducted a prospective observational study on 134 ICU patients with COS-AB VAP to describe the 'real life' clinical use of high-dose (5 MIU q8) aerosolized colistin, using a vibrating mesh nebulizer. Lung pharmacokinetics and microbiome features were investigated. (3) Results: Patients were enrolled during the COVID-19 pandemic with the ICU presenting a SAPS II of 42 [32-57]. At VAP diagnosis, the median PaO2/FiO2 was 120 [100-164], 40.3% were in septic shock, and 24.6% had secondary bacteremia. The twenty-eight day mortality was 50.7% with 60.4% and 40.3% rates of clinical cure and microbiological eradication, respectively. We did not observe any drug-related adverse events. Epithelial lining fluid colistin concentrations were far above the CRAB minimal-inhibitory concentration and the duration of nebulized therapy was an independent predictor of microbiological eradication (12 [9.75-14] vs. 7 [4-13] days, OR (95% CI): 1.069 (1.003-1.138), p = 0.039). (4) Conclusions: High-dose and prolonged colistin nebulization, using a vibrating mesh, was a safe adjunctive therapeutic strategy for COS-AB VAP. Its right place and efficacy in this setting warrant investigation in interventional studies.

3.
Microbiol Spectr ; : e0292222, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2137478

ABSTRACT

In keeping with the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 causative agent, PCR assays have been developed to rapidly detect SARS-CoV-2 variants, which have emerged since the first (Alpha) variant was identified. Based on specific assortment of SARS-CoV-2 spike-protein mutations (ΔH69/V70, E484K, N501Y, W152C, L452R, K417N, and K417T) among the major variants known to date, Seegene Allplex SARS-CoV-2 Variants I and Variants II assays have been available since a few months before the last (Omicron) variant became predominant. Using S gene next-generation sequencing (NGS) as the SARS-CoV-2 variant identification reference method, we assessed the results of SARS-CoV-2-positive nasopharyngeal swab samples from two testing periods, before (n = 288, using only Variants I) and after (n = 77, using both Variants I and Variants II) the appearance of Omicron. The Variants I assay allowed correct identification for Alpha (37/37), Beta/Gamma (28/30), or Delta (220/221) variant-positive samples. The combination of the Variants I and Variants II assays allowed correct identification for 61/77 Omicron variant-positive samples. While 16 samples had the K417N mutation undetected with the Variants II assay, 74/77 samples had both ΔH69/V70 and N501Y mutations detected with the Variants I assay. If considering only the results by the Variants I assay, 6 (2 Beta variant positive, 1 Delta variant positive, and 3 Omicron variant positive) of 365 samples tested in total provided incorrect identification. We showed that the Variants I assay alone might be more suitable than both the Variants I and Variants II assays to identify currently circulating SARS-CoV-2 variants. Inclusion of additional variant-specific mutations should be expected in the development of future assays. IMPORTANCE Omicron variants of SARS-CoV-2 pose more important public health concerns than the previously circulating Alpha or Delta variants, particularly regarding the efficacy of anti-SARS-CoV-2 vaccines and therapeutics. Precise identification of these variants highly requires performant PCR-based assays that allow us to reduce the reliance on NGS-based assays, which remain the reference method in this topic. While the current epidemiological SARS-CoV-2 pandemic context suggests that PCR assays such as the Seegene Variants II may be dispensable, we took advantage of NGS data obtained in this study to show that the array of SARS-CoV-2 spike protein mutations in the Seegene Variants II assay may be suboptimal. This reinforces the concept that initially developed PCR assays for SARS-CoV-2 variant detection could be no longer helpful if the SARS-CoV-2 pandemic evolves to newly emerging variants.

4.
Microbiol Spectr ; 10(5): e0236822, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053140

ABSTRACT

Respiratory tract infection (RTI) is a common cause of visits to the hospital emergency department. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nonpharmaceutical intervention has influenced the rates of circulating respiratory viruses. In this study, we sought to detect RTI etiological agents other than SARS-CoV-2 in emergency department patients from 13 countries in Europe, the Middle East, and Africa from December 2020 to March 2021. We sought to measure the impact of patient characteristics and national-level behavioral restrictions on the positivity rate for RTI agents. Using the BioFire Respiratory Panel 2.0 Plus, 1,334 nasopharyngeal swabs from patients with RTI symptoms who were negative for SARS-CoV-2 were tested. The rate of positivity for viral or bacterial targets was 36.3%. Regarding viral targets, human rhinovirus or enterovirus was the most prevalent (56.5%), followed by human coronaviruses (11.0%) and adenoviruses (9.9%). Interestingly, age stratification showed that the positivity rate was significantly higher in the children's group than in the adults' group (68.8% versus 28.2%). In particular, human rhinovirus or enterovirus, the respiratory syncytial virus, and other viruses, such as the human metapneumovirus, were more frequently detected in children than in adults. A logistic regression model was also used to determine an association between the rate of positivity for viral agents with each country's behavioral restrictions or with patients' age and sex. Despite the impact of behavioral restrictions, various RTI pathogens were actively circulating, particularly in children, across the 13 countries. IMPORTANCE As SARS-CoV-2 has dominated the diagnostic strategies for RTIs during the current COVID-19 pandemic situation, our data provide evidence that a variety of RTI pathogens may be circulating in each of the 13 countries included in the study. It is now plausible that the COVID-19 pandemic will one day move forward to endemicity. Our study illustrates the potential utility of detecting respiratory pathogens other than SARS-CoV-2 in patients who are admitted to the emergency department for RTI symptoms. Knowing if a symptomatic patient is solely infected by an RTI pathogen or coinfected with SARS-CoV-2 may drive timely and appropriate clinical decision-making, especially in the emergency department setting.


Subject(s)
COVID-19 , Respiratory Tract Infections , Adult , Child , Humans , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , Multiplex Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Emergency Service, Hospital
5.
Microbiol Spectr ; 10(4): e0099022, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938016

ABSTRACT

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the last variant of concern (VOC) identified to date. Compared to whole-genome or gene-specific sequencing methods, reverse-transcription PCR assays may be a simpler approach to study VOCs. We used a point-of-care COVID-19 diagnostic PCR assay to detect the Omicron SARS-CoV-2 variant in the respiratory tract samples of COVID-19 patients who had tested positive for SARS-CoV-2 RNA between April 2021 and January 2022. Sequencing analyses had shown that 87 samples were positive for the Omicron variant and 43 samples were positive for a non-Omicron variant (Delta, 18 samples; Alpha, 13 samples; Gamma, 10 samples; Beta, 1 sample; or Epsilon, 1 sample). According to results by the PCR assay, whose primers anneal a nucleocapsid (N) gene region that comprises the E31/R32/S33 deletion (also termed the del31/33 mutation), we found that N gene target failure/dropout (i.e., a negative/low result) occurred in 86 (98.8%) of 87 Omicron variant-positive samples tested. These results were assessed in relation to those of the spike (S) gene, which expectedly, was detected in all (100%) 130 samples. A total of 43 (100%) of 43 Delta, Alpha, Gamma, Beta, or Epsilon variant-positive samples had a positive result with the N gene. Importantly, in 86 of 87 Omicron variant-positive samples, the del31/33 mutation was detected together with a P13L mutation, which was, instead, detected alone in the Omicron variant-positive sample that had a positive N-gene result. IMPORTANCE Rapid detection of the Omicron SARS-CoV-2 variant in patients' respiratory tract samples may influence therapeutic choices, because this variant is known to escape from certain monoclonal antibodies. Our findings strengthen the importance of manufacturers' efforts to improve the existing COVID-19 diagnostic PCR assays and/or to develop novel variant-specific PCR assays. Furthermore, our findings show that only a small fraction of SARS-CoV-2-positive samples may require whole-genome sequencing analysis, which is still crucial to validate PCR assay results. We acknowledge that the emergence of novel variants containing mutations outside the PCR assay target region could, however, allow an assay to work as per specifications without being able to identify a SARS-CoV-2-positive sample as a variant. Future work and more experience in this topic will help to reduce the risk of misidentification of SARS-CoV-2 variants that is unavoidable when using the current PCR assays.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Mutation , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
6.
Diagnostics (Basel) ; 12(6)2022 May 28.
Article in English | MEDLINE | ID: covidwho-1869512

ABSTRACT

We used nasopharyngeal swab samples of patients with a symptomatic (n = 82) or asymptomatic (n = 20) coronavirus disease 2019 (COVID-19) diagnosis to assess the ability of antigen detection tests to infer active (potentially transmissible) or inactive (potentially non-transmissible) infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the subgenomic RNA (sgRNA) as an active replication marker of SARS-CoV-2, 48 (76.2%), 56 (88.9%), and 63 (100%) of 63 samples with sgRNA positive results tested positive with the SD BIOSENSOR STANDARD Q COVID-19 Ag (Standard Q), the SD BIOSENSOR STANDARD F COVID-19 Ag FIA (Standard F), or the Fujirebio LUMIPULSE G SARS-CoV-2 Ag (Lumipulse) assay, respectively. Conversely, 37 (94.9%), 29 (74.4%), and 7 (17.9%) of 39 samples with sgRNA negative results tested negative with Standard Q, Standard F, or Lumipulse, respectively. Stratifying results by the number of days of symptoms before testing revealed that most antigen positive/sgRNA positive results were among samples tested at 2-7 days regardless of the assay used. Conversely, most antigen negative/sgRNA negative results were among samples tested at 16-30 days only when Standard Q or Standard F were used. In conclusion, based on our findings, a negative antigen test, especially with the Lumipulse assay, or a positive antigen test, especially with the Standard F assay, may suggest, respectively, the absence or presence of replication-competent SARS-CoV-2.

8.
Microbiol Spectr ; 9(3): e0069521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1597074

ABSTRACT

Bacterial pneumonia is a challenging coronavirus disease 2019 (COVID-19) complication for intensive care unit (ICU) clinicians. Upon its implementation, the FilmArray pneumonia plus (FA-PP) panel's practicability for both the diagnosis and antimicrobial therapy management of bacterial pneumonia was assessed in ICU patients with COVID-19. Respiratory samples were collected from patients who were mechanically ventilated at the time bacterial etiology and antimicrobial resistance were determined using both standard-of-care (culture and antimicrobial susceptibility testing [AST]) and FA-PP panel testing methods. Changes to targeted and/or appropriate antimicrobial therapy were reviewed. We tested 212 samples from 150 patients suspected of bacterial pneumonia. Etiologically, 120 samples were positive by both methods, two samples were culture positive but FA-PP negative (i.e., negative for on-panel organisms), and 90 were negative by both methods. FA-PP detected no culture-growing organisms (mostly Staphylococcus aureus or Pseudomonas aeruginosa) in 19 of 120 samples or antimicrobial resistance genes in two culture-negative samples for S. aureus organisms. Fifty-nine (27.8%) of 212 samples were from empirically treated patients. Antibiotics were discontinued in 5 (33.3%) of 15 patients with FA-PP-negative samples and were escalated/deescalated in 39 (88.6%) of 44 patients with FA-PP-positive samples. Overall, antibiotics were initiated in 87 (72.5%) of 120 pneumonia episodes and were not administered in 80 (87.0%) of 92 nonpneumonia episodes. Antimicrobial-resistant organisms caused 78 (60.0%) of 120 episodes. Excluding 19 colistin-resistant Acinetobacter baumannii episodes, AST confirmed appropriate antibiotic receipt in 101 (84.2%) of 120 episodes for one or more FA-PP-detected organisms. Compared to standard-of-care testing, the FA-PP panel may be of great value in the management of COVID-19 patients at risk of developing bacterial pneumonia in the ICU. IMPORTANCE Since bacterial pneumonia is relatively frequent, suspicion of it in COVID-19 patients may prompt ICU clinicians to overuse (broad-spectrum) antibiotics, particularly when empirical antibiotics do not cover the suspected pathogen. We showed that a PCR-based, culture-independent laboratory assay allows not only accurate diagnosis but also streamlining of antimicrobial therapy for bacterial pneumonia episodes. We report on the actual implementation of rapid diagnostics and its real-life impact on patient treatment, which is a gain over previously published studies on the topic. A better understanding of the role of that or similar PCR assays in routine ICU practice may lead us to appreciate the effectiveness of their implementation during the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Hospitals , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19 Testing/methods , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Patient Acuity , Pneumonia, Bacterial/microbiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
9.
Gut Pathog ; 13(1): 62, 2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1546792

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) has a tropism for the gastrointestinal tract and several studies have shown an alteration of the gut microbiota in hospitalized infected patients. However, long-term data on microbiota changes after recovery are lacking. METHODS: We enrolled 30 patients hospitalized for SARS­CoV­2-related pneumonia. Their gut microbiota was analyzed within 48 h from the admission and compared with (1) that of other patients admitted for suspected bacterial pneumonia (control group) (2) that obtained from the same subject 6 months after nasopharyngeal swab negativization. RESULTS: Gut microbiota alpha-diversity increased 6 months after the resolution of SARS-CoV-2 infection. Bacteroidetes relative abundance was higher (≈ 36.8%) in patients with SARS-CoV-2, and declined to 18.7% when SARS-CoV-2 infection resolved (p = 0.004). Conversely, Firmicutes were prevalent (≈ 75%) in controls and in samples collected after SARS-CoV-2 infection resolution (p = 0.001). Ruminococcaceae, Lachnospiraceae and Blautia increased after SARS-CoV-2 infection resolution, rebalancing the gut microbiota composition. CONCLUSION: SARS-CoV-2 infection is associated with changes in the gut microbiome, which tend to be reversed in long-term period.

10.
J Clin Med ; 10(8)2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1526842

ABSTRACT

The aim of this study was to characterize COVID-19 (SARS-CoV-2-infected) patients who develop bloodstream infection (BSI) and to assess risk factors associated with in-hospital mortality. We conducted a retrospective observational study of adult patients admitted for ≥48 h to a large Central Italy hospital for COVID-19 (1 March to 31 May 2020) who had or had not survived at discharge. We included only patients having blood cultures drawn or other inclusion criteria satisfied. Kaplan-Meier survival or Cox regression analyses were performed of 293 COVID-19 patients studied, 46 patients (15.7%) had a hospital-acquired clinically relevant BSI secondary to SARS-CoV-2 infection, accounting for 58 episodes (49 monomicrobial and 9 polymicrobial) in total. Twelve episodes (20.7%) occurred at day 3 of hospital admission. Sixty-nine species were isolated, including Staphylococcus aureus (32.8%), Enterobacterales (20.7%), Enterococcus faecalis (17.2%), Candida (13.8%) and Pseudomonas aeruginosa (10.3%). Of 69 isolates, 27 (39.1%) were multidrug-resistant organisms. Twelve (54.5%) of 22 patients for whom empirical antimicrobial therapy was inappropriate were infected by a multidrug-resistant organism. Of 46 patients, 26 (56.5%) survived and 20 (43.5%) died. Exploring variables for association with in-hospital mortality identified > 75-year age (HR 2.97, 95% CI 1.15-7.68, p = 0.02), septic shock (HR 6.55, 95% CI 2.36-18.23, p < 0.001) and BSI onset ≤ 3 days (HR 4.68, 95% CI 1.40-15.63, p = 0.01) as risk factors independently associated with death. In our hospital, mortality among COVID-19 patients with BSI was high. While continued vigilance against these infections is essential, identification of risk factors for mortality may help to reduce fatal outcomes in patients with COVID-19.

12.
BMC Public Health ; 21(1): 760, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1198288

ABSTRACT

BACKGROUND: Transmission of viral diseases (e.g., influenza A H1N1) via respiratory droplets takes place mainly in confined spaces, including in aircraft during commercial air travel. The adoption of hygiene measures may help to prevent disease spread aboard aircraft. This review summarizes the evidence on hand hygiene and the use of facemasks as viral disease prevention measures in aircraft. METHODS: A literature search was performed in the PubMed, Scopus, and Web of Science databases up to 10 June 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. A population, intervention, comparison, outcomes, and study design (PICOS) approach was used to define the review question. RESULTS: We included four studies published between 2007 and 2020, all targeting influenza virus disease, in the qualitative synthesis. Three studies used mathematical models to simulate single- or multiple-direction flights, and two of them showed that facemask (e.g., N95 respirator) use considerably reduced infection probability. In the third study, hand cleaning by 20 to 60% of people at any time in all airports (including on aircraft) reduced the measure of airports' power to spread the disease across the globe by ~ 24 to 69%. The fourth study was a case-control study designed to trace an influenza outbreak in two flights during the 2009 influenza A H1N1 pandemic. The study showed that none (0%) of nine infected passengers compared to 15 (47%) of 32 healthy control passengers in the aircraft cabin during one of these flights wore a facemask (odds ratio, 0.0; 95% confidence interval, 0.0-0.7). In contrast, both case and control passengers appeared to be equally compliant in self-assessed hand hygiene. CONCLUSIONS: Facemask use combined with hand hygiene may minimize the chance of droplet-transmitted virus spread by air travelers. Thus, it is necessary that hygiene measures become an integral part of standard procedures in commercial air travel.


Subject(s)
Air Travel , Hand Hygiene , Influenza A Virus, H1N1 Subtype , Influenza, Human , Virus Diseases , Aircraft , Case-Control Studies , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Masks , Travel
13.
Diagnostics (Basel) ; 11(7)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295790

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen detection has currently expanded the testing capacity for COVID-19, which yet relies on the SARS-CoV-2 RNA RT-PCR amplification. OBJECTIVES: To report on a COVID-19 testing algorithm from a tertiary care hospital emergency department (ED) that combines both antigen (performed on the ED) and RT-PCR (performed outside the ED) testing. METHODS: Between December 2020 and January 2021, in a priori designated, spatially separated COVID-19 or non-COVID-19 ED areas, respectively, symptomatic or asymptomatic patients received SARS-CoV-2 antigen testing on nasopharyngeal swab samples. Antigen results were promptly accessible to guide subsequent, outside performed confirmatory (RT-PCR) testing. RESULTS: Overall, 1083 (100%) of 1083 samples in the COVID-19 area and 1815 (49.4%) of 3670 samples in the non-COVID-19 area had antigen results that required confirmation by RT-PCR. Antigen positivity rates were 12.4% (134/1083) and 3.7% (66/1815), respectively. Compared to RT-PCR testing results, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of antigen testing were, respectively, 68.0%, 98.3%, 88.8%, and 94.1% in the COVID-19 area, and 41.9%, 97.3%, 27.3%, and 98.6% in non-COVID-19 area. Practically, RT-PCR tests were avoided in 50.6% (1855/3670) of non-COVID-19 area samples (all antigen negative) from patients who, otherwise, would have needed antigen result confirmation. CONCLUSIONS: Our algorithm had value to preserve RT-PCR from avoidable usage and, importantly, to save time, which translated into a timely RT-PCR result availability in the COVID-19 area.

14.
Crit Care ; 25(1): 197, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1261277

ABSTRACT

BACKGROUND: Hospitalized patients with COVID-19 admitted to the intensive care unit (ICU) and requiring mechanical ventilation are at risk of ventilator-associated bacterial infections secondary to SARS-CoV-2 infection. Our study aimed to investigate clinical features of Staphylococcus aureus ventilator-associated pneumonia (SA-VAP) and, if bronchoalveolar lavage samples were available, lung bacterial community features in ICU patients with or without COVID-19. METHODS: We prospectively included hospitalized patients with COVID-19 across two medical ICUs of the Fondazione Policlinico Universitario A. Gemelli IRCCS (Rome, Italy), who developed SA-VAP between 20 March 2020 and 30 October 2020 (thereafter referred to as cases). After 1:2 matching based on the simplified acute physiology score II (SAPS II) and the sequential organ failure assessment (SOFA) score, cases were compared with SA-VAP patients without COVID-19 (controls). Clinical, microbiological, and lung microbiota data were analyzed. RESULTS: We studied two groups of patients (40 COVID-19 and 80 non-COVID-19). COVID-19 patients had a higher rate of late-onset (87.5% versus 63.8%; p = 0.01), methicillin-resistant (65.0% vs 27.5%; p < 0.01) or bacteremic (47.5% vs 6.3%; p < 0.01) infections compared with non-COVID-19 patients. No statistically significant differences between the patient groups were observed in ICU mortality (p = 0.12), clinical cure (p = 0.20) and microbiological eradication (p = 0.31). On multivariable logistic regression analysis, SAPS II and initial inappropriate antimicrobial therapy were independently associated with ICU mortality. Then, lung microbiota characterization in 10 COVID-19 and 16 non-COVID-19 patients revealed that the overall microbial community composition was significantly different between the patient groups (unweighted UniFrac distance, R2 0.15349; p < 0.01). Species diversity was lower in COVID-19 than in non COVID-19 patients (94.4 ± 44.9 vs 152.5 ± 41.8; p < 0.01). Interestingly, we found that S. aureus (log2 fold change, 29.5), Streptococcus anginosus subspecies anginosus (log2 fold change, 24.9), and Olsenella (log2 fold change, 25.7) were significantly enriched in the COVID-19 group compared to the non-COVID-19 group of SA-VAP patients. CONCLUSIONS: In our study population, COVID-19 seemed to significantly affect microbiological and clinical features of SA-VAP as well as to be associated with a peculiar lung microbiota composition.


Subject(s)
COVID-19/complications , Pneumonia, Ventilator-Associated/microbiology , Staphylococcal Infections/etiology , Staphylococcus aureus/isolation & purification , Aged , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Italy , Logistic Models , Lung/microbiology , Male , Middle Aged , Organ Dysfunction Scores , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/etiology , Prospective Studies , Respiration, Artificial , Staphylococcal Infections/drug therapy
16.
Clin Chem Lab Med ; 59(8): 1468-1476, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1171669

ABSTRACT

OBJECTIVES: Compared to RT-PCR, lower performance of antigen detection assays, including the Lumipulse G SARS-CoV-2 Ag assay, may depend on specific testing scenarios. METHODS: We tested 594 nasopharyngeal swab samples from individuals with COVID-19 (RT-PCR cycle threshold [Ct] values ≤ 40) or non-COVID-19 (Ct values >40) diagnoses. RT-PCR positive samples were assigned to diagnostic, screening, or monitoring groups of testing. RESULTS: With a limit of detection of 1.2 × 104 SARS-CoV-2 RNA copies/mL, Lumipulse showed positive percent agreement (PPA) of 79.9% (155/194) and negative percent agreement of 99.3% (397/400), whereas PPAs were 100% for samples with Ct values of <18 or 18-<25 and 92.5% for samples with Ct values of 25-<30. By three groups, Lumipulse showed PPA of 87.0% (60/69), 81.1% (43/53), or 72.2% (52/72), respectively, whereas PPA was 100% for samples with Ct values of <18 or 18-<25, and was 94.4, 80.0, or 100% for samples with Ct values of 25-<30, respectively. Additional testing of RT-PCR positive samples for SARS-CoV-2 subgenomic RNA showed that, by three groups, PPA was 63.8% (44/69), 62.3% (33/53), or 33.3% (24/72), respectively. PPAs dropped to 55.6, 20.0, or 41.7% for samples with Ct values of 25-<30, respectively. All 101 samples with a subgenomic RNA positive result had a Lumipulse assay's antigen positive result, whereas only 54 (58.1%) of remaining 93 samples had a Lumipulse assay's antigen positive result. CONCLUSIONS: Lumipulse assay was highly sensitive in samples with low RT-PCR Ct values, implying repeated testing to reduce consequences of false-negative results.


Subject(s)
COVID-19/diagnosis , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing , Humans , Limit of Detection , Nasopharynx/virology , Reagent Kits, Diagnostic , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
17.
J Clin Med ; 10(7)2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1167629

ABSTRACT

Diagnostic methods based on SARS-CoV-2 antigens detection are a promising alternative to SARS-CoV-2 RNA amplification. We evaluated the automated chemiluminescence-based Lumipulse® G SARS-CoV-2 Ag assay on saliva samples, using Simplexa™ COVID-19 Direct assay as a reference test. Analytical performance was established on a pool of healthy donors' saliva samples spiked with the 2019-nCoV/Italy-INMI1 isolate, whereas clinical performance was assessed on fresh saliva specimens collected from hospitalized patients with suspect or confirmed COVID-19 diagnosis. The limit of detection (LOD) was 0.65 Log TCID50/mL, corresponding to 18,197 copies/mL of SARS-CoV-2 RNA. Antigen concentrations and SARS-CoV-2 RNA were highly correlated (r = 0.99; p < 0.0001). Substantial agreement (80.3%) and significant correlation (r = -0.675; p = 0.0006) were observed between Lumipulse® G assay results and Ct values on clinical samples, with 52.4% sensitivity and specificity 94.1%. Sensitivity exceeded 90.0% when calculated on samples with Ct < 25, and specificity was 100% when excluding samples from recovered patients with previous COVID-19 diagnosis. Overall, chemiluminescence-based antigen assay may be reliably applied to saliva samples to identify individuals with high viral loads, more likely to transmit the virus. However, the low positive predictive value in a context of low SARS-CoV-2 prevalence underscores the need for confirmatory testing in SARS-CoV-2 antigen-positive cases.

18.
Int J Environ Res Public Health ; 18(5)2021 03 06.
Article in English | MEDLINE | ID: covidwho-1154372

ABSTRACT

Healthcare workers are at the forefront against COVID-19, worldwide. Since Fondazione Policlinico Universitario A. Gemelli (FPG) IRCCS was enlisted as a COVID-19 hospital, the healthcare workers deployed to COVID-19 wards were separated from those with limited/no exposure, whereas the administrative staff were designated to work from home. Between 4 June and 3 July 2020, an investigation was conducted to evaluate the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin (IgG) antibodies among the employees of the FPG using point-of-care (POC) and venous blood tests. Sensitivity, specificity, and predictive values were determined with reverse-transcription polymerase chain reaction on nasal/oropharyngeal swabs as the diagnostic gold standard. The participants enrolled amounted to 4777. Seroprevalence was 3.66% using the POC test and 1.19% using the venous blood test, with a significant difference (p < 0.05). The POC test sensitivity and specificity were, respectively, 63.64% (95% confidence interval (CI): 62.20% to 65.04%) and 96.64% (95% CI: 96.05% to 97.13%), while those of the venous blood test were, respectively, 78.79% (95% CI: 77.58% to 79.94%) and 99.36% (95% CI: 99.07% to 99.55%). Among the low-risk populations, the POC test's predictive values were 58.33% (positive) and 98.23% (negative), whereas those of the venous blood test were 92.86% (positive) and 98.53% (negative). According to our study, these serological tests cannot be a valid alternative to diagnose COVID-19 infection in progress.


Subject(s)
COVID-19 , Antibodies, Viral , Health Personnel , Hospitals , Humans , Rome , SARS-CoV-2 , Seroepidemiologic Studies , Serologic Tests
20.
BMC Infect Dis ; 20(1): 775, 2020 Oct 19.
Article in English | MEDLINE | ID: covidwho-873954

ABSTRACT

BACKGROUND: Since December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a novel etiologic agent of viral pneumonia. We aimed to compare clinical features of 165 Italian patients with laboratory confirmed or unconfirmed 2019-nCoV pneumonia. METHODS: On March 31, 2020, hospitalized patients who presented with fever and/or respiratory symptoms, exposures, and presence of lung imaging features consistent with 2019-nCoV pneumonia were included. Before admission to a hospital ward, patients underwent RT-PCR based SARS-CoV-2 RNA detection in their nasopharyngeal swab samples. RESULTS: Of 165 patients studied, 119 had positive RT-PCR results and 46 were RT-PCR negative for 2 days or longer (i.e., when the last swab sample was obtained). The median age was 70 years (IQR, 58-78), and 123 (74.6%) of 165 patients had at least one comorbidity. The majority of patients (101/165, 61.2%) had a mild pneumonia, and the remaining patients (64/165, 38.8%) a severe/critical pneumonia. We did not find any substantial difference in symptoms, incubation periods, and radiographic/CT abnormalities as well as in many of the biological abnormalities recorded. However, at multivariable analysis, higher concentrations of hemoglobin (OR, 1.34; 95% CI, 1.11-1.65; P = 0.003) and lower counts of leukocytes (OR, 0.81; 95% CI, 0.72-0.90; P < 0.001) were statistically associated with confirmed COVID-19 diagnosis. While mortality rates were similar, patients with confirmed diagnosis were more likely to receive antivirals (95% vs 19.6%, P < 0.001) and to develop ARDS (63% vs 37%, P = 0.003) than those with unconfirmed COVID-19 diagnosis. CONCLUSIONS: Our findings suggest that unconfirmed 2019-nCoV pneumonia cases may be actually COVID-19 cases and that clinicians should be cautious when managing patients with presentations compatible with COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Aged , COVID-19 , Coronavirus Infections/physiopathology , Diagnosis, Differential , Female , Fever , Humans , Italy , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Real-Time Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2 , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL